If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-41x-46=10
We move all terms to the left:
5x^2-41x-46-(10)=0
We add all the numbers together, and all the variables
5x^2-41x-56=0
a = 5; b = -41; c = -56;
Δ = b2-4ac
Δ = -412-4·5·(-56)
Δ = 2801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-\sqrt{2801}}{2*5}=\frac{41-\sqrt{2801}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+\sqrt{2801}}{2*5}=\frac{41+\sqrt{2801}}{10} $
| 2x(x–5)=12 | | 4x=2x+1x | | 9(5x/6-8/6+7)-3=42 | | 4x=1x+2 | | 7+x/8+x=x-x+1/4 | | 6x-20=2(x-200) | | 2x^2+5x-10=2 | | -1x-9-1x=10-3(x+9) | | (15x+4/3)+(6x-8)=180 | | 9m+10=7m | | 4x+20=2(x-200) | | 17x=9x+72 | | 4/8=7/x | | 3/4x=13/4 | | 1+1+1=2x | | x+1/3-(3x+2)/15=1 | | -19=m+4 | | 9u=30+3u | | (x+83)=(3x+11) | | 1/x=6/18 | | 50+25x=3x^2 | | 4p–10=p+3p–2p | | 4(32.5-0.25y)+y=180 | | 4(32.5-0.25y)=180 | | (7x+9)=(9x+23) | | 8x–3=7x+2 | | x/10+5=4 | | 3x+2x=14 | | 21x-9=90 | | P=1200-8(150n/1+n) | | 5x-33+26=180 | | 10x-(0,5+3x)=2(3,5x-0,75) |